Quick Search

Enter gene name or accession number

Search term: Rv3133c

General annotation | Coordinates | Sequence | Structural information | Orthologs/Cross-references | Interacting Drugs/Compounds | Bibliography
Imagemap from JTubercuList
To navigate upstream or downstream, click on the first or last gene

General annotation
Gene namedevR
Rv numberRv3133c
FunctionRegulator part of the two component regulatory system DEVR/DEVS/dost. Controls HSPX|Rv2031|ACR expression.
ProductTwo component transcriptional regulatory protein DevR (probably LuxR/UhpA-family)
CommentsRv3133c, (MTCY03A2.25), len: 217 aa. DevR (alternate gene name: dosR), two component transcriptional regulator (see Dasgupta et al., 2000; dev for Differentially Expressed in Virulent strain), highly similar to several e.g. O85372|CPRR two component regulator from Rhodococcus sp. (212 aa), FASTA scores: opt: 868, E(): 6.2e-46, (65.05% identity in 206 aa overlap); Q9RI42|SCJ12.16c putative LuxR family two-component response regulator from Streptomyces coelicolor (233 aa), FASTA scores: opt: 849, E(): 9.7e-45, (60.55% identity in 218 aa overlap); Q9XA59|SCGD3.19 putative two-component system response transcriptional regulator from Streptomyces coelicolor (218 aa), FASTA scores: opt: 835, E(): 6.5e-44, (61.55% identity in 208 aa overlap); and similar to others. Contains bacterial regulatory proteins, LuxR family signature (PS00622) near C-terminus as seen in bvgA, comA, dctR, degU, evgA, fimZ, fixJ, gacA, glpR, narL, narP, nodW, rcsB and uhpA. Helix-turn-helix motif at 166-187 (+3.15 SD). Belongs to the LuxR/UhpA family of transcriptional regulators. The N-terminal region is similar to that of other regulatory components of sensory transduction systems.
Molecular mass (Da)23261.9
Isoelectric point5.4523
Gene length (bp)654
Protein length217
Location (kb)3499.26

Functional categoryregulatory proteins

ProteomicsThe product of this CDS corresponds to spot 3_305 identified in culture supernatant by proteomics at the Max Planck Institute for Infection Biology, Berlin, Germany, and also at the Statens Serum Institute (Denmark) (see proteomics citations). Identified in the membrane fraction of M. tuberculosis H37Rv using 1D-SDS-PAGE and uLC-MS/MS (See Gu et al., 2003). Identified in the culture supernatant of M. tuberculosis H37Rv using mass spectrometry (See Mattow et al., 2003). Identified in the cytosol and cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS (See Xiong et al., 2005). Identified by mass spectrometry in Triton X-114 extracts of M. tuberculosis H37Rv (See Malen et al., 2010). Identified by mass spectrometry in the membrane protein fraction and whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate (See de Souza et al., 2011).
TranscriptomemRNA identified by DNA microarray analysis: gene induced by hypoxia (see Sherman et al., 2001), under microaerobic and anaerobic conditions (see Mayuri et al., 2002), and down-regulated after 4h of starvation (see Betts et al., 2002).
Mutationnon essential gene by Himar1-based transposon mutagenesis in H37Rv strain (see Sassetti et al., 2003). Non-essential gene for in vitro growth of H37Rv, by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). M. tuberculosis H37Rv mutant is attenuated in guinea pigs (See Malhotra et al., 2004). M. tuberculosis H37Rv mutant shows increased virulence in SCID mice; mutant grows more quickly in DBA mice and in IFN-gamma activated macrophages (See Parish et al., 2004).
see TB knockouts/mutants availability
RegulonPredicted to be in the DosR|Rv3133c regulon, in M. tuberculosis 1254 (See Voskuil et al., 2003).


Protein sequence in FASTA format
>M. tuberculosis H37Rv|Rv3133c|devR
Blastp: Pre-computed results
TransMembrane prediction using Hidden Markov Models: TMHMM
Genomic sequence

Add extra bases upstream (5') and downstream (3')

Structural information
Protein Data Bank1ZLJ 1ZLK 3C3W 3C57

Gene Ontologytwo-component response regulator activity
two-component signal transduction system (phosphorelay)
transcription factor activity
regulation of transcription, DNA-dependent
sequence-specific DNA binding
host cell cytoplasmic vesicle
M. bovisMb3157c
M. marinumMMAR_1516
M. smegmatisMSMEG_3944
Multiple Sequences Alignment: between orthologs

Interacting Drugs/Compounds
TDR TargetsRv3133c

Expression Data

Mollenkopf HJ, Jungblut PR, Raupach B, Mattow J, Lamer S, Zimny-Arndt U, Zimny -Arndt U, Schaible UE, Kaufmann SH,
A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet
Electrophoresis (1999) 20(11):2172-80
Cited for: Proteomics
Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Zimny -Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K, Kaufmann SH,
Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens
Mol Microbiol (1999) 33(6):1103-17
Cited for: Proteomics
Dasgupta N, Kapur V, Singh KK, Das TK, Sachdeva S, Jyothisri K, Tyagi JS,
Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis
Tuber Lung Dis (2000) 80(3):141-59
Cited for: Biochemistry/Regulation
Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK,
Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin
Proc Natl Acad Sci U S A (2001) 98(13):7534-9
Cited for: Transcriptome
Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K,
Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling
Mol Microbiol (2002) 43(3):717-31
Cited for: Transcriptome
M ayuri, Bagchi G, Das TK, Tyagi JS,
Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two -component system, Rv3134c and chaperone alpha-crystallin homologues
FEMS Microbiol Lett (2002) 211(2):231-7
Cited for: Product/Transcriptome
Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, Stoker NG,
Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.
Infect Immun (2003) 71(3):1134-40
Cited for: Mutant/Secondary/Function
Sassetti CM, Boyd DH, Rubin EJ,
Genes required for mycobacterial growth defined by high density mutagenesis.
Mol Microbiol (2003) 48(1):77-84
Cited for: Mutant
Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR,
Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis.
Mol Microbiol (2003) 48(3):833-843
Cited for: Mutant/Function/Transcriptome
Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA,
A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression.
Infect Immun (2003) 71(9):5332-43
Cited for: Regulation/Secondary
Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK,
Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program.
J Exp Med (2003) 198(5):705-13
Cited for: Regulon
Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, Chen X,
Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain.
Mol Cell Proteomics (2003) 2(12):1284-96
Cited for: Proteomics
Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, Haeselbarth G, Muller EC, Jungblut PR, Kaufmann SH,
Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen.
Electrophoresis (2003) 24(19-20):3405-20
Cited for: Proteomics
Malhotra V, Sharma D, Ramanathan VD, Shakila H, Saini DK, Chakravorty S, Das TK, Li Q, Silver RF, Narayanan PR, Tyagi JS,
Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis.
FEMS Microbiol Lett (2004) 231(2):237-45
Cited for: Mutant
Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR,
Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis.
J Biol Chem (2004) 279(22):23082-7
Cited for: Function
Saini DK, Malhotra V, Dey D, Pant N, Das TK, Tyagi JS,
DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR.
Microbiology (Reading, Engl.) (2004) 150(Pt 4):865-75
Cited for: Function
Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury AR, Chen X,
Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.
Mol Biol Cell (2005) 16(1):396-404
Cited for: Proteomics
Xiong Y, Chalmers MJ, Gao FP, Cross TA, Marshall AG,
Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry.
J Proteome Res (2005) 4(3):855-61
Cited for: Proteomics
Wisedchaisri G, Wu M, Rice AE, Roberts DM, Sherman DR, Hol WG,
Structures of Mycobacterium tuberculosis DosR and DosR-DNA complex involved in gene activation during adaptation to hypoxic latency.
J Mol Biol (2005) 354(3):630-41
Cited for: Structure
Malen H, Pathak S, Softeland T, de Souza GA, Wiker HG,
Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv.
BMC Microbiol (2010) 10:132
Cited for: Proteomics
de Souza GA, Leversen NA, Malen H, Wiker HG,
Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway.
J Proteomics (2011) 75(2):502-10
Cited for: Proteomics
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM,
High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism.
PLoS Pathog (2011) 7(9):e1002251
Cited for: Mutant