Quick Search

Enter gene name or accession number

Search term: Rv3130c

General annotation | Coordinates | Sequence | Structural information | Orthologs/Cross-references | Interacting Drugs/Compounds | Bibliography
Imagemap from R
To navigate upstream or downstream, click on the first or last gene

General annotation
Gene nametgs1
Rv numberRv3130c
FunctionInvolved in synthesis of triacylglycerol
ProductTriacylglycerol synthase (diacylglycerol acyltransferase) Tgs1
CommentsRv3130c, (MTCY03A2.28, MTCY164.41c), len: 463 aa. tgs1, triacylglycerol synthase (See Daniel et al., 2004; Sirakova et al., 2006), similar to several hypothetical Mycobacterium tuberculosis strain H37Rv proteins e.g. O06795|YH60_MYCTU|Rv1760|MTCY28.26 hypothetical 54.1 KDA protein (502 aa), FASTA scores: opt: 586, E(): 9.8e-29, (28.95% identity in 463 aa overlap). Predicted possible vaccine candidate (See Zvi et al., 2008).
Molecular mass (Da)50720.6
Isoelectric point10.6619
Gene length (bp)1392
Protein length463
Location (kb)3494.98

Functional categorylipid metabolism

ProteomicsIdentified in the cell wall and cell membrane fractions of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified in the membrane fraction of M. tuberculosis H37Rv using nanoLC-MS/MS (See Xiong et al., 2005). Translational start site supported by proteomics data (See Kelkar et al., 2011).
TranscriptomemRNA identified by DNA microarray analysis (gene induced by hypoxia) (see citation below). DNA microarrays show increased expression in M. tuberculosis H37Rv in BALB/c mice compared to SCID mice, after 21 days of infection (See Talaat et al., 2004).
MutationNon-essential gene for in vitro growth of H37Rv, by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). H37Rv with tgs1 disrupted is impaired in triacylglycerol accumulation under acidic, static or hypoxic growth conditions (See Sirakova et al., 2006). Check for mutants available at TARGET website
RegulonPredicted to be in the DosR|Rv3133c regulon, in M. tuberculosis 1254 (See Voskuil et al., 2003).


Protein sequence in FASTA format
>M. tuberculosis H37Rv|Rv3130c|tgs1
Blastp: Pre-computed results
TransMembrane prediction using Hidden Markov Models: TMHMM
Genomic sequence

Add extra bases upstream (5') and downstream (3')

Structural information
Protein Data BankNo structure available

Enzyme Classification2.3.1.20
Gene Ontologydiacylglycerol O-acyltransferase activity
glycerol metabolic process
lipid biosynthetic process
M. bovisMb3154c
M. marinumMMAR_1519
M. smegmatisMSMEG_3948
Multiple Sequences Alignment: between orthologs

Interacting Drugs/Compounds
TDR TargetsRv3130c

Expression Data

Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK,
Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin
Proc Natl Acad Sci U S A (2001) 98(13):7534-9
Cited for: Transcriptome
Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR,
Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis.
Mol Microbiol (2003) 48(3):833-843
Cited for: Transcriptome
Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA,
A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression.
Infect Immun (2003) 71(9):5332-43
Cited for: Regulation/Secondary
Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK,
Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program.
J Exp Med (2003) 198(5):705-13
Cited for: Regulon
Talaat AM, Lyons R, Howard ST, Johnston SA,
The temporal expression profile of Mycobacterium tuberculosis infection in mice.
Proc Natl Acad Sci U S A (2004) 101(13):4602-7
Cited for: Transcriptome
Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE,
Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture.
J Bacteriol (2004) 186(15):5017-30
Cited for: Function/Product
Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury AR, Chen X,
Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.
Mol Biol Cell (2005) 16(1):396-404
Cited for: Proteomics
Xiong Y, Chalmers MJ, Gao FP, Cross TA, Marshall AG,
Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry.
J Proteome Res (2005) 4(3):855-61
Cited for: Proteomics
Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, Abomoelak B, Kolattukudy PE,
Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress.
Microbiologyl (2006) 152(Pt 9):2717-25
Cited for: Function/Product
Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A,
Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses.
BMC Med Genomics (2008) 1:18
Cited for: Immunology
Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B, Yadav AK, Shrivastava P, Marimuthu A, Anand S, Sundaram H, Kingsbury R, Harsha HC, Nair B, Prasad TS, Chauhan DS, Katoch K, Katoch VM, Kumar P, Chaerkady R, Ramachandran S, Dash D, Pandey A,
Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry.
Mol Cell Proteomics (2011) 10(12):M111.011627
Cited for: Proteomics/Sequence
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM,
High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism.
PLoS Pathog (2011) 7(9):e1002251
Cited for: Mutant