Quick Search

Enter gene name or accession number

Search term: Rv2914c

General annotation | Coordinates | Sequence | Structural information | Orthologs/Cross-references | Interacting Drugs/Compounds | Bibliography
Imagemap from R
To navigate upstream or downstream, click on the first or last gene

General annotation
Gene namepknI
Rv numberRv2914c
FunctionInvolved in signal transduction (via phosphorylation). Thought to be involved in cell division/differentiation [catalytic activity: ATP + a protein = ADP + a phosphoprotein].
ProductProbable transmembrane serine/threonine-protein kinase I PknI (protein kinase I) (STPK I) (phosphorylase B kinase kinase) (hydroxyalkyl-protein kinase)
CommentsRv2914c, (MTCY338.02c), len: 585 aa. Probable pknI, transmembrane serine/threonine-protein kinase (see citation below), ala-rich protein, highly similar to many in Mycobacterium tuberculosis and other bacteria e.g. Q9RLQ7|MBK putative serine/threonine protein kinase from Mycobacterium bovis BCG (291 aa), FASTA scores: opt: 376, E(): 1.1e-10, (36.95% identity in 287 aa overlap); P33973|PKN1_MYXXA serine/threonine-protein kinase from Myxococcus xanthus (693 aa), FASTA scores: opt: 286, E(): 5.4e-10, (29.9% identity in 374 aa overlap); P72003|PKNF_MYCTU|Rv1746|MT1788|MTCY28.09 probable serine/threonine-protein kinase from Mycobacterium tuberculosis (476 aa), FASTA scores: opt: 675, E(): 1.7e-24, (39.75% identity in 468 aa overlap); Q10697|PKNJ_MYCTU|Rv2088|MT2149|MTCY49.28 probable serine/threonine-protein kinase from Mycobacterium tuberculosis (589 aa), FASTA scores: opt: 574, E(): 1e-19, (34.85% identity in 479 aa overlap); etc. Equivalent to AAK47308 from Mycobacterium tuberculosis strain CDC1551 (603 aa) but shorter 18 aa. Contains Hank's kinase subdomain. Belongs to the Ser/Thr family of protein kinases.
Molecular mass (Da)61804.8
Isoelectric point5.6263
Gene length (bp)1758
Protein length585
Location (kb)3221.77

Functional categoryregulatory proteins

ProteomicsIdentified in the cell membrane fraction of M. tuberculosis H37Rv using 2DLC/MS (See Mawuenyega et al., 2005). Identified by mass spectrometry in M. tuberculosis H37Rv-infected guinea pig lungs at 90 days but not 30 days (See Kruh et al., 2010). Identified by mass spectrometry in whole cell lysates of M. tuberculosis H37Rv but not the culture filtrate or membrane protein fraction (See de Souza et al., 2011). Translational start site supported by proteomics data (See Kelkar et al., 2011).
Mutationnon essential gene by Himar1-based transposon mutagenesis in H37Rv and CDC1551 strains (see Sassetti et al., 2003 and Lamichhane et al., 2003). Non-essential gene for in vitro growth of H37Rv, but essential for in vitro growth on cholesterol; by sequencing of Himar1-based transposon mutagenesis (See Griffin et al., 2011). M. tuberculosis H37Rv pknI|Rv2914c mutant shows increased growth in THP-1 cells compared to wild-type; SCID mice infected with wild-type survive longer than those infected with mutant (See Gopalaswamy et al., 2009).
see TB knockouts/mutants availability


Protein sequence in FASTA format
>M. tuberculosis H37Rv|Rv2914c|pknI
Blastp: Pre-computed results
TransMembrane prediction using Hidden Markov Models: TMHMM
Genomic sequence

Add extra bases upstream (5') and downstream (3')

Structural information
Protein Data BankNo structure available

Enzyme Classification2.7.11.1
Gene Ontologyprotein serine/threonine kinase activity
ATP binding
protein amino acid phosphorylation
M. bovisMb2938c
M. lepraeML1620
M. marinumMMAR_1794
Multiple Sequences Alignment: between orthologs

Interacting Drugs/Compounds
TDR TargetsRv2914c

Expression Data

Av-Gay Y, Everett M,
The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis
Trends Microbiol (2000) 8(5):238-44
Cited for: Review
Sassetti CM, Boyd DH, Rubin EJ,
Genes required for mycobacterial growth defined by high density mutagenesis.
Mol Microbiol (2003) 48(1):77-84
Cited for: Mutant
Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR,
A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A (2003) 100(12):7213-8
Cited for: Mutant
Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury AR, Chen X,
Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.
Mol Biol Cell (2005) 16(1):396-404
Cited for: Proteomics
Gopalaswamy R, Narayanan S, Chen B, Jacobs WR, Av-Gay Y,
The serine/threonine protein kinase PknI controls the growth of Mycobacterium tuberculosis upon infection.
FEMS Microbiol Lett (2009) 295(1):23-9
Cited for: Mutant
Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM,
Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo.
PLoS One (2010) 5(11):e13938
Cited for: Proteomics
de Souza GA, Leversen NA, Malen H, Wiker HG,
Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway.
J Proteomics (2011) 75(2):502-10
Cited for: Proteomics
Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B, Yadav AK, Shrivastava P, Marimuthu A, Anand S, Sundaram H, Kingsbury R, Harsha HC, Nair B, Prasad TS, Chauhan DS, Katoch K, Katoch VM, Kumar P, Chaerkady R, Ramachandran S, Dash D, Pandey A,
Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry.
Mol Cell Proteomics (2011) 10(12):M111.011627
Cited for: Proteomics/Sequence
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM,
High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism.
PLoS Pathog (2011) 7(9):e1002251
Cited for: Mutant